3.555 \(\int \frac {\cos ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=317 \[ -\frac {(283 A-163 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {(157 A-85 B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{80 a^2 d \sqrt {a \sec (c+d x)+a}}-\frac {(787 A-475 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{240 a^2 d \sqrt {a \sec (c+d x)+a}}+\frac {(2671 A-1495 B) \sin (c+d x)}{240 a^2 d \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {(21 A-13 B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac {(A-B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}} \]

[Out]

-1/4*(A-B)*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(5/2)-1/16*(21*A-13*B)*cos(d*x+c)^(3/2)*sin(d*x+c)/a
/d/(a+a*sec(d*x+c))^(3/2)-1/32*(283*A-163*B)*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(
d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(5/2)/d*2^(1/2)+1/80*(157*A-85*B)*cos(d*x+c)^(3/2)*sin(d*x+
c)/a^2/d/(a+a*sec(d*x+c))^(1/2)+1/240*(2671*A-1495*B)*sin(d*x+c)/a^2/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)
-1/240*(787*A-475*B)*sin(d*x+c)*cos(d*x+c)^(1/2)/a^2/d/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 1.12, antiderivative size = 317, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {2955, 4020, 4022, 4013, 3808, 206} \[ \frac {(157 A-85 B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{80 a^2 d \sqrt {a \sec (c+d x)+a}}-\frac {(787 A-475 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{240 a^2 d \sqrt {a \sec (c+d x)+a}}+\frac {(2671 A-1495 B) \sin (c+d x)}{240 a^2 d \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {(283 A-163 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(21 A-13 B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac {(A-B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^(5/2)*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

-((283*A - 163*B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]*Sqrt[C
os[c + d*x]]*Sqrt[Sec[c + d*x]])/(16*Sqrt[2]*a^(5/2)*d) - ((A - B)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(4*d*(a +
a*Sec[c + d*x])^(5/2)) - ((21*A - 13*B)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2)) +
 ((2671*A - 1495*B)*Sin[c + d*x])/(240*a^2*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) - ((787*A - 475*B)*S
qrt[Cos[c + d*x]]*Sin[c + d*x])/(240*a^2*d*Sqrt[a + a*Sec[c + d*x]]) + ((157*A - 85*B)*Cos[c + d*x]^(3/2)*Sin[
c + d*x])/(80*a^2*d*Sqrt[a + a*Sec[c + d*x]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2955

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[((a + b*Csc[e + f*x])^m*(
c + d*Csc[e + f*x])^n)/(g*Csc[e + f*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4013

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[(
a*A*m - b*B*n)/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A
, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]

Rule 4020

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(b*f*(2
*m + 1)), x] - Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*B*n - a*A*(2
*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*
b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]

Rule 4022

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}} \, dx\\ &=-\frac {(A-B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} a (13 A-5 B)-4 a (A-B) \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {(A-B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(21 A-13 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{4} a^2 (157 A-85 B)-\frac {3}{2} a^2 (21 A-13 B) \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx}{8 a^4}\\ &=-\frac {(A-B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(21 A-13 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(157 A-85 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{80 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {1}{8} a^3 (787 A-475 B)+\frac {1}{2} a^3 (157 A-85 B) \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx}{20 a^5}\\ &=-\frac {(A-B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(21 A-13 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac {(787 A-475 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{240 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {(157 A-85 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{80 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{16} a^4 (2671 A-1495 B)-\frac {1}{8} a^4 (787 A-475 B) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx}{30 a^6}\\ &=-\frac {(A-B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(21 A-13 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(2671 A-1495 B) \sin (c+d x)}{240 a^2 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {(787 A-475 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{240 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {(157 A-85 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{80 a^2 d \sqrt {a+a \sec (c+d x)}}-\frac {\left ((283 A-163 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {(A-B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(21 A-13 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(2671 A-1495 B) \sin (c+d x)}{240 a^2 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {(787 A-475 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{240 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {(157 A-85 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{80 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {\left ((283 A-163 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=-\frac {(283 A-163 B) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{16 \sqrt {2} a^{5/2} d}-\frac {(A-B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(21 A-13 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(2671 A-1495 B) \sin (c+d x)}{240 a^2 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {(787 A-475 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{240 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {(157 A-85 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{80 a^2 d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.34, size = 207, normalized size = 0.65 \[ \frac {2 \tan (c+d x) \sqrt {1-\sec (c+d x)} \sec (c+d x) (5 (887 A-479 B) \cos (c+d x)+16 (52 A-25 B) \cos (2 (c+d x))-40 A \cos (3 (c+d x))+12 A \cos (4 (c+d x))+3491 A+40 B \cos (3 (c+d x))-1895 B)+60 \sqrt {2} (283 A-163 B) \sin (c+d x) \cos ^4\left (\frac {1}{2} (c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )}{480 d \sqrt {\cos (c+d x)-1} (a (\sec (c+d x)+1))^{5/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Cos[c + d*x]^(5/2)*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(60*Sqrt[2]*(283*A - 163*B)*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Cos[(c + d*x)/2]^4*Sec
[c + d*x]^(5/2)*Sin[c + d*x] + 2*(3491*A - 1895*B + 5*(887*A - 479*B)*Cos[c + d*x] + 16*(52*A - 25*B)*Cos[2*(c
 + d*x)] - 40*A*Cos[3*(c + d*x)] + 40*B*Cos[3*(c + d*x)] + 12*A*Cos[4*(c + d*x)])*Sqrt[1 - Sec[c + d*x]]*Sec[c
 + d*x]*Tan[c + d*x])/(480*d*Sqrt[-1 + Cos[c + d*x]]*(a*(1 + Sec[c + d*x]))^(5/2))

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 572, normalized size = 1.80 \[ \left [-\frac {15 \, \sqrt {2} {\left ({\left (283 \, A - 163 \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (283 \, A - 163 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (283 \, A - 163 \, B\right )} \cos \left (d x + c\right ) + 283 \, A - 163 \, B\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left (96 \, A \cos \left (d x + c\right )^{4} - 160 \, {\left (A - B\right )} \cos \left (d x + c\right )^{3} + 32 \, {\left (49 \, A - 25 \, B\right )} \cos \left (d x + c\right )^{2} + 5 \, {\left (911 \, A - 503 \, B\right )} \cos \left (d x + c\right ) + 2671 \, A - 1495 \, B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{960 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, \frac {15 \, \sqrt {2} {\left ({\left (283 \, A - 163 \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (283 \, A - 163 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (283 \, A - 163 \, B\right )} \cos \left (d x + c\right ) + 283 \, A - 163 \, B\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + 2 \, {\left (96 \, A \cos \left (d x + c\right )^{4} - 160 \, {\left (A - B\right )} \cos \left (d x + c\right )^{3} + 32 \, {\left (49 \, A - 25 \, B\right )} \cos \left (d x + c\right )^{2} + 5 \, {\left (911 \, A - 503 \, B\right )} \cos \left (d x + c\right ) + 2671 \, A - 1495 \, B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{480 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[-1/960*(15*sqrt(2)*((283*A - 163*B)*cos(d*x + c)^3 + 3*(283*A - 163*B)*cos(d*x + c)^2 + 3*(283*A - 163*B)*cos
(d*x + c) + 283*A - 163*B)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*
x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*(
96*A*cos(d*x + c)^4 - 160*(A - B)*cos(d*x + c)^3 + 32*(49*A - 25*B)*cos(d*x + c)^2 + 5*(911*A - 503*B)*cos(d*x
 + c) + 2671*A - 1495*B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d
*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), 1/480*(15*sqrt(2)*((283*A - 163*B)*cos(d*x
 + c)^3 + 3*(283*A - 163*B)*cos(d*x + c)^2 + 3*(283*A - 163*B)*cos(d*x + c) + 283*A - 163*B)*sqrt(-a)*arctan(s
qrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 2*(96*A*cos(d*x
 + c)^4 - 160*(A - B)*cos(d*x + c)^3 + 32*(49*A - 25*B)*cos(d*x + c)^2 + 5*(911*A - 503*B)*cos(d*x + c) + 2671
*A - 1495*B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 +
3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*cos(d*x + c)^(5/2)/(a*sec(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

maple [A]  time = 2.30, size = 461, normalized size = 1.45 \[ \frac {\left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (-1+\cos \left (d x +c \right )\right )^{2} \left (4245 A \left (\cos ^{2}\left (d x +c \right )\right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-192 A \left (\cos ^{5}\left (d x +c \right )\right )-2445 B \left (\cos ^{2}\left (d x +c \right )\right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+8490 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )+512 A \left (\cos ^{4}\left (d x +c \right )\right )-4890 B \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )-320 B \left (\cos ^{4}\left (d x +c \right )\right )+4245 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, A \sin \left (d x +c \right )-3456 A \left (\cos ^{3}\left (d x +c \right )\right )-2445 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, B \sin \left (d x +c \right )+1920 B \left (\cos ^{3}\left (d x +c \right )\right )-5974 A \left (\cos ^{2}\left (d x +c \right )\right )+3430 B \left (\cos ^{2}\left (d x +c \right )\right )+3768 A \cos \left (d x +c \right )-2040 B \cos \left (d x +c \right )+5342 A -2990 B \right )}{480 d \sin \left (d x +c \right )^{5} a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x)

[Out]

1/480/d*cos(d*x+c)^(1/2)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(4245*A*cos(d*x+c)^2*arctan(1/2
*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*(-2/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-192*A*cos(d*x+c)^5-2445*B*cos(d*x+
c)^2*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*(-2/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+8490*A*arctan(1/2*s
in(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*sin(d*x+c)+512*A*cos(d*x+c)^4-4890*B
*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*sin(d*x+c)-320*B*cos(d*
x+c)^4+4245*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*(-2/(1+cos(d*x+c)))^(1/2)*A*sin(d*x+c)-3456*A*cos
(d*x+c)^3-2445*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*(-2/(1+cos(d*x+c)))^(1/2)*B*sin(d*x+c)+1920*B*
cos(d*x+c)^3-5974*A*cos(d*x+c)^2+3430*B*cos(d*x+c)^2+3768*A*cos(d*x+c)-2040*B*cos(d*x+c)+5342*A-2990*B)/sin(d*
x+c)^5/a^3

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\cos \left (c+d\,x\right )}^{5/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(5/2)*(A + B/cos(c + d*x)))/(a + a/cos(c + d*x))^(5/2),x)

[Out]

int((cos(c + d*x)^(5/2)*(A + B/cos(c + d*x)))/(a + a/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________